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Abstract: Integrating continuous spatial data IBOLAP systems is a new research challenge. Morgover
representation of field data at different scalesesolutions is often mandatory for an effectivalgsis.
Thus, in this paper, we propose a logical modéhtiegrate spatial dimensions representing incoragletd
data at different resolutions in a classical SOlakéhitecture.

1 INTRODUCTION discrete (vector) and continuous field (Mennis,

Viger et al. 2005). Continuous fields (also called

. ., continuous spatial data) represent physical
Spatial Data Warehouse (SDW) and Spatial phenomena that continuously change in space

OLAP (SOLAP) systems play an important role in (pagjing, Sebillo et al. 2010), for example the
helping decision-makers obtain the maximum temperature, population, etc. Two representatidns o
benefits of these large amounts of geographic datafield data have been proposed: incomplete and
(Bedard, Merrett et al. 2001). These technologies complete (Paolino, Sebillo et al. 2010). Incomplete
extend Data Warehouse (DW) and OLAP systems torepresentations store a sample of points and need
integrate spatial data with warehoused classical da additional functions to calculate the field in non-
to achieve the on-line analysis of large sampled areas (e.g. grid of points, TIN, etc.).(e.g
georeferenced data sets. SOLAP systems integratéigure 2). Complete representations associate
advanced OLAP and Geographic Information estimated vaIu_es to regions _anq assume_that these
Systems (GIS) in a unique framework usually basedvalues are valid for each point in the regions.(e.g

. . . raster). For those representations some ad-hoc
on the relathnal storage (i.e. Oracle, etc.) aitisp . analysis operators have been defined that allow a
data according to the vector model, and their

, . point by point analysis (i.e. map algebra (Mennis,
analy3|s th.rough SOL_AP operators (Spatial Roll-Up, Viger et al. 2005)). Representation of geographic
Spatial Slice, etc.) implemented by the SOLAP (ata at different scales or resolutions (e.g. R
server (e.g. Map4Decision, etc.) and visualized by b) is mandatory for an effective analysis of spatia
means of tabular, graphical and cartographic complex phenomena since it represents a
displays (Gomez, Gomez et al. 2012). SDW are geovisualization method (Camossi, Bertino et al.
modeled according to the spatio-multidimensional 2009). Consequently, these resolutions or scales
model that extends the traditional multidimensional represent decision-makers analysis needs thatdshoul

model to define spatial dimensions (i.e. analysisa P& explicitly represented in any data and query
with spatial attributes) and spatial measures (i.e.M0d€l- Indeed, in the context of Geographic

analysis subjects) that integrate coara hiCInformation Systems and Spatial Databases
analysis ) Y . 9cograp Management Systems (SDBSM), several works
information using the vector model (Bédard, Rivest

YWESt addresses this issue by proposing conceptual,dbgic

et al. 2007). SOLAP technology can be applied in 3nd physical data models and analysis techniques

different domains (e.g. archeology, public health, (Parent, spaccapietra et al. 2006).

etc.). Motivated by the important analysis capabilities
Geographic information can be represented by offered by the continuous field representation of

two models, depending on the nature of data: geographic data when integrated in SOLAP systems



(visualization, querying, etc.) recently some works
investigated the extension of the spatio-
multidimensional model and SOLAP operators with
complete and incomplete field data (cf. Section 6).
In the same way, handling multi-resolutions of
spatial data into spatial multidimensional models h

been proposed in few works (Yvan, Proulx et al.

to apply a spatial slice operator on the spatial
dimension (i.e. using a spatial predicate to sedect

subset of warehoused data) (Figure 2-d). In order t
answer to these last two queries spatial interjoolat

methods are necessary, since in incomplete field
only the values provided by the simulation model
are stored. Spatial interpolation is the process of

2002) (Gascuefia and Guadalupe 2009) that proposgrediction of almost exact values of attributes at
conceptual models to represent SDW with severalunsampled locations from measurements made at
representations (scales, resolutions, etc.) ofiadpat control points within the same area (O'Sullivan and
dimensions and measures. J.Unwin 2002). In our case the interpolation fumati
However, to best of our knowledge existing used is the bilinear interpolation, which is a loca
works concerning field data and multi-resolutions deterministic method. It uses the 2 * 2 grid sample
lack of a complete implementation in a full-featire points closest to the unknown point and calculates
SOLAP architecture, or in other terms they do not distance weighted average which determines in what
propose a coupled relational and SOLAP server proportion the value of a neighbour impact on the
model for a generic SOLAP architecture allowing (i) value of the point to be estimated (Figure 1).
the map algebra operators, (ii) the multi-resohutio Finally, as stated in the previous section, since
and (iii) a continuous view of the field. visualization of spatial data at different resalas is

In order to handle the spatio-multidimensional
analysis of incomplete regular grid field data at
different resolutions, we propose in this papéra(i
specific logical model, extending the well-know
relational star schema; (i) and some new MDX-

mandatory for the exploration/analysis process,
decision-makers should be able querying spatial
warehoused data at different resolutions. It ig/ve
important to note that for each spatial phenomemon
set of useful known resolutions exist, so they doul

based defined functions. We validate our proposal be predefined according to data and users needs.
using a real case study concerning the odorMoreover, in order to calculate values at finer
monitoring, and we provide some experiments resolutions spatial interpolation functions as
showing the feasibility also in terms of storagel an previously described can be used.

computation performances. To summarize, spatio-multidimensional analysis
of field data impliessupporting (i) OLAP classical
operators as Map Algebra, (ii) continuous view of
spatial data, (iii) spatial slice operators usinglél
data, and (iv) visualizing and querying data at
different predefined resolutions

2 MODELING AND ANALYSIS
REQUIREMENTS

In order to show our proposal, we present a case
study based on data issued from the monitoring of 3
urban odor. For each 15 minutes and type of odor
(e.g. NO2) a regular grid map (field) is produced b
means of some sample points and a simulation ; ; ; ;
X . . In this section we describe our spatio-
model (ADMS5) . The simulation model estlmaies multidimensional model for handling incomplete
:)hdors ;‘pr a.(\;vhollze urba}n ar?a qn? prqéiuces 10§d100fields at different resolutions. Our model extetius
thematic grids. Examples ot points grid areé profiiae ., ogjeq) spatio-multidimensional models to gereerat
in figure 2”-a (ododr)vfalui% g:)e {gpzrezsoef;ed %ylcé)lfé the continuity of the phenomena over the studied
green, yellow, red) for 10: -2- an : e :
19-2-2012. Let us now suppose that the user want area, and represents pre-defined levels of resoluti

, X Sn particular, a “Cube” is composed of “Facts” and
to aggregate data along a temporal dimension (year"Dimensions”. A “Dimension” is composed of

(r)nt‘)jtgf[rr:’aﬂag’ Tgugterg'glggr) r:qumgT:]hse .Sav:rr]a%(i Afg “Hierarchies”, which are composed of “Levels”. A
: ggreg p. 1hIS 1 “Level” can be spatial or conventional. This means

Spatio-multidimensional model
for incomplete field data

operation of RollUp on the temporal dimension that
corresponds to a local map algebra operation (Eigur

2-a. Moreover, since space is represented in a
continuous way, decision-makers should be able to

ask for the result of any OLAP query in any poifit o

the spatial dimension (for example, s/he should be
interested in the odor value at 10:00 in the area

behind the building) (Figure 2-c). It is also padsi

that it can contain “Spatial attributes” (e.g. gein
etc.), or contain only alphanumerical attributes
respectively. “Facts” is composed of “Spatial
Measures” or “Conventional Measures”. Moreover,
our extension defines a “Field level” as a special
type of spatial level where each member has a
geometric attribute (e.g. point), a “neighbourhood



relationship” association, and a resolution leve
which it belongs.

@
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Figure 2: a) local map algebra aggregation ¢

incomplete field. b) multiresolution representatiomer
incomplete field c) querying an unsampled point
querying an unsampled zone

Indeed, as described in the previous sectic
spatial interpolation foction uses a set of poin
which depend on the function (e.g. bilinear funa
uses a 2*2 grid), to estimate the unknown va
Thus, in our approach values are represente
measures, the “Neighbourhood relation” links e
detailed "Field level" tots neighbours in the le:
detailed level. As soon as the value of a t
resolution "Field level" is required its neighboare
found through the “Neighbourhood relatiol
However, this type of relationship can
implemented in different ways, dependion the
intended purpose as shown in the next sectiol
our case, we want to estimate the value of anytj
(x, y) of a Field level, so neighbours are found
the fly by the relation "Neighbourhood relationt.
the case of a change in the level of lution, the
members of a high resolution (e.g. 200*200),
predefined and therefore, their respec
neighbours, which belongs to the resolut
100*100, can be prstored as attribute

As described in the model, a hierarchy .
contain several field levels representing tf
phenomena at different resolutions. This means
changing resolutions implies navigating into
hierarchy and calculating values by means of
interpolation function or an aldoc aggregation

function when we move from lesstailed resolution
to more detailed one, or vice ver

The odor SDW of our case study using our sf
multidimensional model is shown in Figure

This instance describes the dimensions and faat:
constitute our cube.

In addition to the dimensionsSource, Tracer and
Time), the "Facts" class has a classical mee
“odorMeasure” and a derived meas
“EstimatedOdorMeasure”. The derived measur
calculated according to two functior
a)"Interpolatepoint’€ontinuity).b)"InterpolateBiline
ar" (multiresolution) In our case, the interpolatic
function used is the "bilinear interpolatic. The
relationship whose cardinalities are "2, 4" repnés
the “Neighbourhood relation”. A member of t
"Incomplete Field Level" can have 2 or
neighbours, dependiman its position in the grid 2*
that surrounds it. The “Neighbourhood relation” |
be used to retrieve neighbours of a location (1gy
estimate the value in that position (continuity) t@
retrieve a high resolution member’s neighbour:
the lower evel of resolution to estimate its val
(multiresolution on the fly).

4 Relational and OLAP models

In this section we present the implementatiol

our spatiomultidimensional model in a typic
relational SOLAP architecture based on SQL
Relational DBMS standard language) and MD
which is the ddacto standard of OLAP Serve
This provides a generality character to our apgrgc
being possible to be implemented in any architex
of this kind.
Let us suppose to have one “Field lev
representingpoints at the resolution 100*100, a
then the logical model of our case study
represented as in fig. 4. It is a classical staesa@.
This model is composed of a fact table contair
measures with foreign keys to dimension tak
Each dimension taél is denormalized, and h
attributes representing levels.

Let us also suppose to have a classical O
model based on that logical schema, where
spatial level is calledField].[res100] . As we
can see, the dimensions that constitute the
are: thetemporal dimension, which consists of fi
levels of granularity (Year, month, day, hour
minute); the Source dimension that expresses
source of the pollutant (e.g. cars); the Tre
dimension is the type of pollutant (eg NO2), wh
is also defind by its identifier and name; and t
“Field dimension” that represent a regular grid
points and consists of one level representing
regular grid at the 100*100 resolution, which



composed of an identifier and a geometry representation of incomplete field data in the
representing a point. The measure «Concentration ofmultidimensional model allows making queries as
odor» represents the values for all members Map Algebra operators (point by point aggregation)
representing the field at a 100*100 resolution.sThi such as the following:

el ST
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Figure 3: Odor SDW multi-dimensional model

Query 1 select average odor for each field table, evaluate the value of the point to estimate

member during 2012 using these values, and then return an estimated
SELECT [Field].[res100]. Members ON derived measure. Here is an example query that uses
ROWS, {[time].[2012] } ON COLUMNS the "InterpolatePoint" function:

FROM [odorCube] WHERE Query 2: select a field member's value at
[Measures].[value] coordinates 7121148 3140020) for the year 2012.

With member [Measures].[value] as'
InterpolatePoint(ST_GeomFromText("
POINT (721148 3140020)"))'

In order to implement field levels we have SELECT [Measures].[value]ON ROWS,
defined a GeoMDX user-defined function that [time].[2012] ON COLUMNS
represents a spatial interpolation as: FROM [odorCube]

NumericType InterpolatePoint(Geometry)

This function takes as input a geometry (point) and
returns a numerical value, which is a derived
measure in the OLAP model, representing an
estimated value calculated using the neighbourhood
values of the point given in input. Thus, let us
suppose that we want to retrieve a value of thd fie

in a location whose geometric property is set ® th
geometric coordinates POINT(-72.1235 42.3521).
Then in order to answer to that need using the
Bilinear interpolation function, decision-makers

have to simply use a GeoMDX function in the Figure 4: Classical star schema integrating regyfiar of
following way: InterpolatePoint(POINT(- points
72.1235 42.3521)).

ThUS,.the .fUnCtion will look for the neighbours Note that genera”y MDX allows deﬁning user-
of the point given as a parameter, in the fielelev  defined functions in several programming languages
([Field].[res100]), on the basis of the distanceda (i.e. Java, .NET, etc.) depending of the OLAP Serve
then find neighbours’ respective values in the fact ysed. In this work we have used a Java-based

4.1  Incomplete field



implementation in GeoMondrian (see Sec. 5). In fact table is associated, classically, to the most
particular, the interpolation is done using an &xgs detailed level of the field dimension.
interpolation Java AP “javax.media.jai api” (JAI). In this way, decision-maker can explore
. Ién (;h's way We.achlevle thef.C(I)gtlnuous V'e‘(’j" of \warehoused field data at different resolutions ryri
leld data using incomplete fields as stated In yho gome analysis MDX-based session. Only need to
Section 2. S

change the level of resolution in the query to gean
4.2 Multiresolution the Ievel_of details of the result. Using th_is aph,

we use in an MDX query, the appropriate level of

Theoretica”y' we can measure a value of a field resolution of the field dimension as in the fO”wl

at every position inside a geographic space.where the Query 1 becomes:

However, not all resolutions are necessarily reieva Query 3 select average Qdor fo_r each field
Indeed, according to the type of analysis performed member at the 400*400 resolution during 2012
by the user, a more or less detailed resolutionbean SELECT [Field].[res400]. Members ON

requested. The multiresolution is an approach thatROWS, {[time].[2012] } ON COLUMNSFROM
consists in defining resolution levels likely to [odorCube]

improve the rendering of the requests made by theWHERE [Measures].[valug]

user. To model an incomplete field at several

resolutions in a multi-dimensional model, we . .

propose two Approaches based on the “Classical®-2-2 Field Interpolation Star-Schema
Star Schema”: The “fieldiggregationstar-schema”  Approach

approach and the “fielthterpolation star schema”
agBroach. P As stated in Section 2, in order to provide field

data at finer resolutions, spatial interpolation

methods can be used. Then, here we propose a
4.2.1 Field Aggregation Star-Schema variation of the previously proposed schema for
Approach handling multiple field resolution levels, by
associating the fact table to the field at lessuikt

Baseq on the star SChe”.‘a model  previously resolution as shown on figure 5-b. In our approach
described, we propose a logical schema where the

ial di . ts diff ¢ field level moving from fact table values to finer spatial
zgfa a t|men|5|tc?n pr(e]c§en53 '_?rrfn Ied lth sda members’ values implies applying spatial
erent resolutions (fig. : -a). IS modet exten interpolation functions. Note that this approach is
the spatial dimension of figurewlith 2 other levels

h . diff level of luti possible only when dealing with spatial data,
eac representing a di ere_nt evel of resolution po.q e according to the Tobler law geographical
([Field].[res200] and [Field].[res400] )

) . S j osition of data can be used for estimating missin
Each level of the field dimension is composed of an \F/)alues g g

identifier and a geometry representing a palifte

(@) (b)
Figure 5:(a) Field Aggregation Star Schema (FASS), (b) Fietdrpolation Star Schema (FISS)



We have implemented a GeoMDX function in the follows the Simple Features for SQL specification

same way of the function defined in Section 4.1: ~ from the Open Geospatial Consortium (OGC); we
Numeric-type  InterpolateBilinear (Field use GeoMondrian as a SOLAP server; and JPivot as
Member) a client. GeoMondrian is an Open Source Spatial

However, this function, named "InterpolateBilinear Online Analytical Processing Server. ' .
In order to test our proposal we define different

IS prepared 1o receive as input a f|_eld level membe cases where the spatial dimension presents: olde fie
instead of geometry and return an interpolatedevalu |oye| at the 100%100 resolution: two levels at the

of this member. We can also see that in this dase,  resolutions 100*100 and 200+200; and finally three
neighbors of each member of a higher resolution jevels at the resolutions 100*100, 200*200 and
than the original one are also stored in the “Pield 400*400. We also vary the size of the temporal
(Neighbours2, Neighbours3), since members of eachdimension in order to understand impact of the
resolution are pre-defined in advance, but their spatial and non spatial dimension on performances.
values are not since they depend on other Figure 6-a shows the size of the fact table

dimensions. measured in function of the number of spatial and
Calling this function as follows: temporal members (spatial finest resolution /
InterpolateBilinear temporal finest granularity) using the two
([Field].[res400].CurrentMember) in the approaches. We can easily see two important

formula of a derived measyrallows to find the  differences: i) the field aggregation approach is
values of all the members of the level “res400” expensive in terms of storage than the field
(incomplete field at a 400*400 resolution) using interpolation one since the latter stores only sact
their neighbors “Neighbors3” . Thus, the query 8 ca Values at a less detailed spatial granularityiniighe

be performed as follows: field interpolation approach the size of the fadilé
SELECT only varies depending on the size of the non spatia
{[Field].[res400].Members} ON ROWS, dimensions. Thus, even increasing the size of the
{ [time].[2012] } ON COLUMNS spatial dimension, the fact table does not change
FROM [odorCube] since it contains only measures related to the firs
Where [Measures].[EstimatedValue] level of resolution.

In order to evaluate computation performance
While in the multidimensional SOLAP schema, we execute the queries previously cited, where we
the "InterpolateBilinear" function is called in the combine roll-up operation on non spatial
“EstimatedValue” calculated measure formula as:  dimensions, and spatial slice operators over differ
formula="  InterpolateBilinear([Field].[ field resolutions.
res400].CurrentMember) " Figure 6-b represents the execution time of theyjue
As we can see in the previous query, the call of 3, which consists in generating values of the
the calculated measure enables to find the valuas a members at different resolutions taking into ac¢oun
given scale transparently to the decision makea as different sizes of the time dimension. This figure
classical aggregation (SQL). This approach is shows a certain degree of approximation in
motivated by performance issues as described in theexecution time between the two approaches to a
next section. certain level. Beyond this level, we note that gag
widens considerably. Thus, minimizing storage and
] ] relations has allowed the field interpolation
5 Experimentations approach we propose to have better execution time
than the field aggregation approach at all resoiuti
In this section we detail the performances of levels (100*100, 200200 and 400*400). Figure 9

the two approaches proposed in Section 4.2 (FAssShows that the execution time in the *field

and FISS) in terms of storage and time computation, 299régation approach” increases depending on the
The computer used for the following tests has the number of spatial and temporal members, whereas in

followi f - ® ™ i3 the *“field interpolation approach”, it increases
ollowing configuration: processor Intel® core ™ i mainly depending on the number of temporal

2,20 GHz, RAM 4 Go, Operating system Windows 7 mempers. Indeed the size of the spatial dimension
professional, System OS 64 bits. does not influence much on performance, since there

In particular, spatial data is stored in PostGIS js no relationship between the fact table and the
Spatial DBMS. PostGIS is an open source software members who belong to high resolutions.

that adds support for geographic objects to
the PostgreSQL object-relational database. PostGIS
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6 Related work

In order to integrate fields data in a SOL,
model, @Ahmed and Miquel 20() propose a
multidimensional model for handling continuc
discrete fields, storing a sample of points asiap
members, to create a discrete cube whict
interpolated in the clierdide to simulate
continuity. (McHugh 2008)defines new types ¢
dimensions handling fields as a regular grid
squares (raster): “hybrid dimension”, “mixed hyk
dimension”, “mixed matrix dimension” ar
“geometric matrix dimension”. $halso defines th
“matrix cube” where facts are cells of the ma
grid. The “field aggregation approach” presente:
section 4.2.1 is based on this work. However,
“field interpolation approach” we propose, althot
it gives the same result, it isome efficient in term:
of storage and execution tim&dgmez, Gomez et ¢
2012)presents a discrete data model for represe!
continuous fields and an algebra that makes us
OLAP operators (e.g. DiceSlice, Rol-up, Drill-
down ...). However, the discrete model the autl
propose does not support the continuous aspe
the field, which consists to retrieve a value facle
point with coordinates x and y in the map.
(Gomez, Vaisman et al. 201Q@he athors propose a
multidimensional model handling fields. Th
define two types of fields, “field” and “tempfielc
(spatial field and temporal field), and semantios
the operators associated to these data types.
include the notion of field dimensic and field
measures. Thegefine the “field dimension” as
dimension containing at least one level that iekl
(temperature, precipitation...the “field measure
as a measure represented by a field and the '

hierarchy” as a set of related fielevels, which
allows a field to be seen at different levels

granularity .They also propose a physical model

data warehouses with continuous fields. Howe
no implementation has been proposed and

hierarchical relationship between field leveas not
been brought to light.Bimonte and Myoung 20.)

provide a multidimensional mode¢hat integrates
field data independently from their implementati
as measures and dimensions. They also pres
formal representation of the spe-multidimensional
model schema where they define the concepi
field dimensions, field measures, areld views. To
our knowledge, no implementation including
continuous appearance of incomplete field or

multiresolution over incomplete fields has b
proposed.

Representation of multidimensional data ur
different resolution levels or scales mabe
considered as multirepresentati(Bernier, Bédard
et al. 2005)proposes an approach to provide-
Demand multiscale maps. Although this approz
models maps features at different scales by
spatial hierarchies, but it does not contain meszsst
(Yvan, Proulx et al. 2002)efines a UMI-based
conceptual model that integrates multiple geom:
and semantic representations properties of sy
levels. However, this work does not presen
complete multidimensional model with facts ¢
hierarchies.

Moreover (Bédard et al., 2002) suggests (with
providing details) using a different spatial d
warehouse for each representation. There
changing the representation corresponds to mc
another spatial data wareho. (Gascueia and
Guadalupe 2009ropose a conceptual model witl
multi-representation of spatial members. They



propose a physical schema, but any implementation
into a classical ROLAP architecture is presented.

.Lecture Notes in Computer Science Volume
6295, 2011, pp 58-72

Finally, (McGuire, Gangopadhyay et al. 2008)define camossi, E., E. Bertino, et al. (2009). " Adaptive

a snowflake schema for an environmental
application where three dimensions represent the
same spatial members at different resolutions.

7 Conclusion and future work

In this paper we present a multidimensional
model for incomplete fields at several resolutions
and its implementation in a SOLAP architecture Gomez,
based on standards (e.g. SQL and MDX). We are
working on using spatial data mining to speed-up
map algebra operations and implement a SOLAP
visualization client. We also work in integrating
other interpolation functions to generalize the
proposed approach.
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